Optimization of Antenna Parameters Using Artificial Neural Network: A Review
نویسندگان
چکیده
Microstrip Patch antenna is used in various antenna systems because of their low profile, light weight, low cost, compactness etc. Patch antenna is also used with Microwave IC’s and Monolithic Microwave IC’s because of its compatibility. Artificial neural network have become popular for predicting performance parameters of various antenna because of their learning and simplification features. The use of neural networks can considerably diminish the complexity. An upfront application of an artificial network consumes the information resulting from the composite measured processes to train an ANN. After appropriate process of training, these network representation can be considered in place of computationally exhaustive representations in order to hurry up the investigation. Various neural network training algorithm were used by the researchers to optimize the parameters of various antenna and to obtain the accurate results in less time. In this paper, we have made a study and survey on various antenna designs parameters using artificial neural network.
منابع مشابه
Optimization of Oleuropein Extraction from Olive Leaves using Artificial Neural Network
In this work, the artificial neural networks (ANN) technology was applied to the simulation of oleuropein extraction process. For this technology, a 3-layer network structure is applied, and the operation factors such as amount of flow intensity ratio, temperature, residence time, and pH are used as input variables of the network, whereas the extraction yield is considere...
متن کاملModeling and Optimization of Roll-bonding Parameters for Bond Strength of Ti/Cu/Ti Clad Composites by Artificial Neural Networks and Genetic Algorithm
This paper deals with modeling and optimization of the roll-bonding process of Ti/Cu/Ti composite for determination of the best roll-bonding parameters leading to the maximum Ti/Cu bond strength by combination of neural network and genetic algorithm. An artificial neural network (ANN) program has been proposed to determine the effect of practical parameters, i.e., rolling temperature, reduction...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کاملOptimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm
Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...
متن کاملUsing neural network to estimate weibull parameters
As is well known, estimating parameters of the tree-parameter weibull distribution is a complicated task and sometimes contentious area with several methods vying for recognition. Weibull distribution involves in reliability studies frequently and has many applications in engineering. However estimating the parameters of Weibull distribution is crucial in classical ways. This distribution has t...
متن کامل